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Route choice

Objective:

• Understand, describe and predict how travelers select their
itinerary in a transportation system,

• within a transportation mode, or across transportation modes.

Applications:

• Real-time operations: Travel information and guidance

• Decision-aid: Traffic simulation

• Policy: congestion pricing
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Travel information and guidance
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Travel information and guidance

Behavioral issues:

• For prediction: compliance to recommendation

• For guidance: identify preferences to customize the system

The complex nature of route choice models – p. 4/49



Traffic simulation
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Congestion pricing
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Congestion pricing

Asking whether congestion pricing is good is like asking ’What is
good sex?’ It depends on what you do, and if you don’t do certain
things up front, this will never happen.

Ed Ott (2007)
Executive Director of the New York City Central Labor Council
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Complexity of route choice models

Main issues:

• Model

• Data

• Physical overlap of paths

• Large choice set

Emma Frejinger (2008). “Route choice analysis : data, models,
algorithms and applications.” PhD thesis EPFL, no 4009.
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Route choice model

Given

• a traveler

• a network composed of nodes and directed arcs with attributes

• an origin

• a destination

predict the path chosen by the traveler
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Route choice model

Assumptions about

1. the decision-maker: n with characteristics zn

2. the alternatives
• Choice set Cn

• p ∈ Cn is composed of a list of links (i, j)

3. the attributes xpn

• link-additive: length, travel time, etc.

(xpn)k =
∑

(i,j)∈p

ℓ(i,j)

• non link-additive: scenic path, usual path, etc.

4. the decision-rules: Pr(p|Cn)
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Shortest path

Main idea:

• combine the attributes into a generalized cost, possibly
traveler-specific

• apply a shortest-path algorithm (Dijkstra)

Disadvantages

• behaviorally irrealistic

• instability with respect to variations in cost

• calibration on real data is very difficult
• inverse shortest path problem is NP complete
• Burton, Pulleyblank and Toint (1997) The Inverse Shortest

Paths Problem With Upper Bounds on Shortest Paths Costs

Network Optimization , Series: Lecture Notes in Economics

and Mathematical Systems , Vol. 450, P. M. Pardalos, D.

W. Hearn and W. W. Hager (Eds.), pp. 156-171, Springer
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Random utility

Main idea:

• The decision-maker n associates a utility Upn with each path p

in Cn

• The path with the highest utility is selected

• Utility is an abstract and latent concept which is modeled as a
random variable

Upn = Vpn(xpn, zn) + εpn

• Probability model

Pn(p|Cn) = Pr(Upn ≥ Uqn ∀q ∈ Cn)
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Outline

• Model: Random utility model

• Data

• Physical overlap of paths

• Large choice set
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Data

Context: Swiss Mobility Pricing Project

• A part of a major study on various mobility pricing scenarios in
Switzerland

• A collaboration with ETH Zurich and USI Lugano

• Revealed Preferences (RP) and Stated Preferences (SP) data
has been collected

• RP data concern long distance route choice by car
• Route descriptions are approximative
• Route choices are latent
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RP Data

• Exact descriptions of chosen routes are difficult and expensive
to obtain

• The concept of path and network as we need for modeling is
abstract for respondents

• Here, a chosen route is described by a sequence of cities and
locations

• Travelers do not need to refer to the network used by the
analyst
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RP data
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RP data
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RP data

Modeling issue:

• Aggregate observations (several paths in the network can
correspond to the same observation)

• Exact origin-destination pairs are not necessarily known

• Exact route is not known
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Similar circumstance: GPS data
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Inappropriate approaches

• “Guess” the path from the aggregate observation
- Involves subjective judgments and generate noise

• Alternatives in the model are aggregates instead of physical
paths
- Estimated model is of little use in practice
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Proposed approach

Bierlaire, M., and Frejinger, E. (2008). Route choice modeling

with network-free data, Transportation Research Part C: Emerging

Technologies 16(2):187-198.

Idea:

• The underlying route choice is based on path

• Observations are not based on paths

• Include measurement equations to link the two
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Modeling Approach

• Probability of an aggregate observation i:

P (i) =
∑

s∈S

P (s|i)
∑

r∈Cs

P (i|r)P (r|Cs)

• s: origin-destination pair
• S: set of all origin-destination pairs
• r: route
• Cs: set of all routes for origin-destination pair s
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Modeling Approach

• Probability of an aggregate observation i:

P (i) =
∑

s∈S

P (s|i)
∑

r∈Cs

P (i|r)P (r|Cs)

• P (s|i) and P (i|r) can be modeled in several ways
• P (r|Cs): route choice model that is identifiable if

1. at least one of the routes in Cs crosses the observed
zones, and

2. at least one route in Cs does not cross the observed
zones.

• This type of models can be estimated with BIOGEME
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Outline

• Model: Random utility model

• Data: Use measurement equations

• Physical overlap of paths

• Large choice set
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Physical overlap

Path 1 : c

c − δ

δ

δ

• Assume that the utility of each path is Ui = −βc + εi

• Assume the logit model (εi i.i.d. EV):

Pr(Path 1) =
e−βc1

∑

q∈C
e−βcq

=
e−βc

3e−βc
=

1

3
for any c, δ, β
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Physical overlap

• Model prediction is counter-intuitive if δ is small

• In this case, the error terms cannot be assumed to be
independent

• The model must account for the correlation of the ε due to
physical overlap

• Among the existing approaches: path-size and error
component models

The complex nature of route choice models – p. 26/49



Path Size Logit

Ben-Akiva, M., and Bierlaire, M. (2003). Discrete choice models

with applications to departure time and route choice. In Hall, R.

(ed) Handbook of Transportation Science, 2nd edition pp.7-38.

Kluwer.

• With logit, the utility of overlapping paths is overestimated

• When δ is large, there is some sort of “double counting”

• Idea: include a correction

Vp = −βcp + β ln PSp

where

PSp =
∑

(i,j)∈p

c(i,j)

cp

1
∑

q∈C
δ

q
i,j

and δ
q
i,j =

{

1 if link (i, j) belongs to path q

0 otherwise
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Path Size Logit

Path 1 : c

c − δ

δ

δ

PS1 =
c

c

1

1
= 1

PS2 = PS3 = c−δ
c

1
2 + δ

c
1
1 =

1

2
+

δ

2c
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Path Size Logit
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Path Size Logit
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Path Size Logit

Advantages:

• Logit formulation: simple

• Easy to compute

• Exploits the network topology

• Practical

Disadvantages:

• Derived from the theory on nested logit

• Several formulations have been proposed

• Correlated with observed and unobserved attributes

• May give biased estimates
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Logit kernel

Bekhor, Ben-Akiva and Ramming (2002) Adaptation of Logit Kernel to

Route Choice Situation. Transportation Research Record.

1805:78-85

Idea: Include an additional error term per link

Up = Vp +
∑

ℓ∈p

fℓpσℓξℓ + εp

• fℓp is a factor loading

• σℓ is a parameter to be estimated (standard deviation)

• ξℓ is a link-specific random term N(0, 1)

• εp is a path-specific random term EV (0, 1)
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Logit kernel

Path 1 : c (Link 1)

c − δ (Link 2)
δ

(L
ink

3)
δ
(L

ink
4)

Utop = −βc +
√

cσ1ξ1 +εtop

UbottomUp = −βc +
√

c − δσ2ξ2 +
√

δσ3ξ3 +εbottomUp

UbottomDown = −βc +
√

c − δσ2ξ2 +
√

δσ4ξ4 +εbottomUp
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Logit kernel

• High number of error components in real networks

• Mixture of logit models has no closed form

• Simulated maximum likelihood estimation is unfeasible with a
high number of error components
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Subnetworks

Frejinger, E., and Bierlaire, M. (2007). Capturing correlation

with subnetworks in route choice models, Transportation Research

Part B: Methodological 41(3):363-378.

doi:10.1016/j.trb.2006.06.003

Idea:

• capture the most important correlation structure

• while keeping the model complexity low

• Extend the logit kernel idea

• Apply an error component on subnetworks instead of links

• The analyst must define few subnetworks
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Subnetworks

How to define the subnetworks?

• A subnetwork component is a set of links corresponding to a
part of the network which is behaviorally meaningful and that
can be easily labeled

• Subnetwork approach designed to be behaviorally realistic and
convenient for the analyst

• Paths sharing a subnetwork component are assumed to be
correlated even if they are not physically overlapping
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Subnetworks - Example
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Subnetworks - Methodology

• Factor analytic specification of an error component model
(based on model presented in Bekhor et al., 2002)

Un = βT
Xn + FnTζn + εn

• Fn (JxQ): factor loadings matrix

• (fn)iq =
√

lniq

• T(QxQ) = diag (σ1, σ2, . . . , σQ)

• ζn (Qx1): vector of i.i.d. N(0,1) variates

• ε(Jx1): vector of i.i.d. Extreme Value distributed variates
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Subnetworks - Example
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Empirical Results

• Simplified Swiss network (39411 links and 14841 nodes)

• RP data collection through telephone interviews

• Long distance car travel

• The chosen routes are described with the origin and destination
cities as well as 1 to 3 cities or locations that the route pass by

• 940 observations available after data cleaning and verification
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Empirical Results
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Empirical Results

• No information available on the exact origin destination pairs

P (s|i) =
1

|Si|
∀s ∈ Si

• P (i|r) is modeled with a binary variable

δri =

{

1 if r corresponds to i

0 otherwise
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Empirical Results

• Two origin-destination pairs are randomly chosen for each
observation

• 46 routes per choice set are generated with a choice set
generation algorithm

• After choice set generation 780 observations are available
• 160 observations were removed because either all or none

of the generated routes crossed the observed zones
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Empirical Results

• Probability of an aggregate observation i

P (i) =
∑

s∈Si

1

|Si|

∑

r∈Cs

δriP (r|Cs)

• We estimate Path Size Logit (Ben-Akiva and Bierlaire, 1999)
and Subnetwork (Frejinger and Bierlaire, 2007) models

• BIOGEME (biogeme.epfl.ch) used for all model estimations
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Empirical Results - Subnetwork

• Subnetwork: main motorways in Switzerland

• Correlation among routes is explicitly modeled on the
subnetwork

• Combined with a Path Size attribute

• Linear-in-parameters utility specifications
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Empirical Results - Subnetwork
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Parameter PSL Subnetwork
ln(path size) based on free-flow time 1.04 (0.134) 7.81 1.10 (0.141) 7.78

Scaled Estimate 1.04 1.04
Freeway free-flow time 0-30 min -7.12 (0.877) -8.12 -7.45 (0.984) -7.57

Scaled Estimate -7.12 -7.04
Freeway free-flow time 30min - 1 hour -1.69 (0.875) -1.93 -2.26 (1.03) -2.19

Scaled Estimate -1.69 -2.14
Freeway free-flow time 1 hour + -4.98 (0.772) -6.45 -5.64 (1.00) -5.61

Scaled Estimate -4.98 -5.33
CN free-flow time 0-30 min -6.03 (0.882) -6.84 -6.25 (0.975) -6.41

Scaled Estimate -6.03 -5.91
CN free-flow time 30 min + -1.87 (0.331) -5.64 -2.16 (0.384) -5.63

Scaled Estimate -1.87 -2.04
Main free-flow travel time 10 min + -2.03 (0.502) -4.05 -2.46 (0.624) -3.95

Scaled Estimate -2.03 -2.33
Small free-flow travel time -2.16 (0.685) -3.16 -2.75 (0.804) -3.42

Scaled Estimate -2.16 -2.60
Proportion of time on freeways -2.2 (0.812) -2.71 -2.31 (0.865) -2.67

Scaled Estimate -2.2 -2.18
Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 (0.752) -5.88 -4.40 (0.800) -5.51
Scaled Estimate -4.43 -4.16

Proportion of time on small -6.23 (0.992) -6.28 -6.02 (1.03) -5.83
Scaled Estimate -6.23 -5.69

Covariance parameter 0.217 (0.0543) 4.00
Scaled Estimate 0.205



Empirical Results

PSL Subnetwork

Covariance parameter 0.217

(Rob. Std. Error) Rob. T-test (0.0543) 4.00

Number of simulation draws - 1000

Number of parameters 11 12

Final log-likelihood -1164.850 -1161.472

Adjusted rho square 0.145 0.147

Sample size: 780, Null log-likelihood: -1375.851
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Empirical Results

• All parameters have their expected signs and are significantly
different from zero

• The values and significance level are stable across the two
models

• The subnetwork model is significantly better than the Path Size
Logit (PSL) model
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Summary

• Model: Random utility model

• Data: Use measurement equations

• Physical overlap of paths: Path Size Logit & Subnetworks

• Large choice set: Frejinger, E. (2007). Random Sampling of

Alternatives in a Route Choice Context. Proceedings of the

European Transport Conference (ETC) October 17-19, 2007

Illustration: congestion pricing project in Switzerland
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